Publication

Dual-Energy CT-based Display of Bone Marrow Edema in Osteoporotic Vertebral Compression Fractures: Impact on Diagnostic Accuracy of Radiologists with Varying Levels of Experience in Correlation to MR Imaging

Journal Paper/Review - Feb 29, 2016

Units
PubMed
Doi

Citation
Kaup M, Vogl T, Boettcher M, Lehnert T, Albrecht M, Kromen W, Beeres M, Scholtz J, Wichmann J, Bauer R. Dual-Energy CT-based Display of Bone Marrow Edema in Osteoporotic Vertebral Compression Fractures: Impact on Diagnostic Accuracy of Radiologists with Varying Levels of Experience in Correlation to MR Imaging. Radiology 2016; 280:510-9.
Type
Journal Paper/Review (English)
Journal
Radiology 2016; 280
Publication Date
Feb 29, 2016
Issn Electronic
1527-1315
Pages
510-9
Brief description/objective

Purpose To evaluate whether a dual-energy (DE) computed tomographic (CT) virtual noncalcium technique can improve the detection rate of acute thoracolumbar vertebral compression fractures in patients with osteoporosis compared with that at magnetic resonance (MR) imaging depending on the level of experience of the reading radiologist. Materials and Methods This retrospective study was approved by the institutional ethics committee. Informed consent was obtained from all patients. Forty-nine patients with osteoporosis who were suspected of having acute vertebral fracture underwent DE CT and MR imaging. Conventional linear-blended CT scans and corresponding virtual noncalcium reconstructions were obtained. Five radiologists with varying levels of experience evaluated gray-scale CT scans for the presence of fractures and their suspected age. Then, virtual noncalcium images were evaluated to detect bone marrow edema. Findings were compared with those from MR imaging (the standard of reference). Sensitivity and specificity analyses for diagnostic performance and matched pair analyses were performed on vertebral fracture and patient levels. Results Sixty-two fractures were classified as fresh and 52 as old at MR imaging. The diagnostic performance of all readers in the detection of fresh fractures improved with the addition of virtual noncalcium reconstructions compared with that with conventional CT alone. Although the diagnostic accuracy of the least experienced reader with virtual noncalcium CT (accuracy with CT alone, 61%; accuracy with virtual noncalcium technique, 83%) was within the range of that of the most experienced reader with CT alone, the latter improved his accuracy with the noncalcium technique (from 81% to 95%), coming close to that with MR imaging. The number of vertebrae rated as unclear decreased by 59%-90% or from 15-53 to 2-13 in absolute numbers across readers. The number of patients potentially referred to MR imaging decreased by 36%-87% (from 11-23 to 2-10 patients). Considering the gain in true decisions with the virtual noncalcium technique on a patient level, between 12 (most experienced reader) and 17 (least experienced reader) MR examinations could have been avoided. Conclusion The DE CT-based virtual noncalcium technique may enable depiction of bone marrow edema in thoracolumbar vertebral compression fractures in patients with osteoporosis, with good accordance with MR imaging when images are read by experienced radiologists. Although less experienced readers improved their diagnostic performance to some degree, the experienced reader's diagnostic performance approached that with MR imaging. (©) RSNA, 2016.