Publication

PLGA-microencapsulation protects Salmonella typhi outer membrane proteins from acidic degradation and increases their mucosal immunogenicity

Journal Paper/Review - Jun 29, 2016

Units
PubMed
Doi

Citation
Carreño J, Gander B, López-Macías C, Tanoue Y, Chariatte D, Isibasi A, Pastelin R, Printz A, Gil Cruz C, Perez Shibayama C, Ludewig B. PLGA-microencapsulation protects Salmonella typhi outer membrane proteins from acidic degradation and increases their mucosal immunogenicity. Vaccine 2016; 34:4263-9.
Type
Journal Paper/Review (English)
Journal
Vaccine 2016; 34
Publication Date
Jun 29, 2016
Issn Electronic
1873-2518
Pages
4263-9
Brief description/objective

Salmonella (S.) enterica infections are an important global health problem with more than 20 million individuals suffering from enteric fever annually and more than 200,000 lethal cases per year. Although enteric fever can be treated appropriately with antibiotics, an increasing number of antibiotic resistant Salmonella strains is detected. While two vaccines against typhoid fever are currently on the market, their availability in subtropical endemic areas is limited because these products need to be kept in uninterrupted cold chains. Hence, the development of a thermally stable vaccine that induces mucosal immune responses would greatly improve human health in endemic areas. Here, we have combined the high structural stability of Salmonella typhi outer membrane proteins (porins) with their microencapsulation into poly(lactic-co-glycolic acid) (PLGA) to generate an orally applicable vaccine. Encapsulated porins were protected from acidic degradation and exhibited enhanced immunogenicity following oral administration. In particular, the vaccine elicited strong S. typhi-specific B cell responses in Peyer's patches and mesenteric lymph nodes. In sum, PLGA microencapsulation substantially improved the efficacy of oral vaccination against S. typhi.